viernes, 18 de marzo de 2011

Algebra Booleana

El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " º " definido en éste juego de valores acepta un par de entradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta dos entradas booleanas y produce una sola salida booleana.
            Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden deducir reglas adicionales, teoremas y otras propiedades del sistema, el álgebra booleana a menudo emplea los siguientes postulados:
  • Cerrado. El sistema booleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.
  • Conmutativo. Se dice que un operador binario " º " es conmutativo si A º B = B º A para todos los posibles valores de A y B.
  • Asociativo. Se dice que un operador binario " º " es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.
  • Distributivo. Dos operadores binarios " º " y " % " son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.
  • Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario " º " si A º I = A.
  • Inverso. Un valor booleano I es un elemento inverso con respecto a un operador booleano " º " si A º I = B, y B es diferente de A, es decir, B es el valor opuesto de A.
 
Leyes fundamentales
El resultado de aplicar cualquiera de las tres operaciones definidas a variables del sistema booleano resulta en otra variable del sistema, y este resultado es único.
1. Ley de idempotencia:
 a \cdot a = a \,
 a + a = a \,
2. Ley de involución:
 \overline {\bar {a}} = a
3. Ley conmutativa:
 a \cdot b = b \cdot a \,
 a + b = b + a \,
4. Ley asociativa:
 a \cdot (b \cdot c) = (a \cdot b ) \cdot c\,
 a + (b + c) = (a + b ) + c \,
5. Ley distributiva:
 a \cdot (b + c) = (a \cdot b) + (a \cdot c) \,
 (a + b ) \cdot c = (a \cdot c) + (b \cdot c) \,
 a + (b \cdot c) = (a + b) \cdot (a + c) \,
 (a \cdot b ) + c = (a + c) \cdot (b + c) \,
 a + \bar {a} \cdot b = a + b \,
6. Ley de cancelación:
 (a \cdot b) + a= a \,
 (a + b) \cdot a= a \,
7. Ley de identidad:
 a + 0 = a \,
 a + 1 = 1 \,
 a \cdot 1 = a \,
 a \cdot 0 = 0 \,
 \overline {(a + b)}= \bar {a} \cdot \bar {b} \,
 \overline {(a \cdot b)} = \bar {a}+ \bar {b} \,


No hay comentarios:

Publicar un comentario